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Abstract. We present a method for augmenting the 3D reconstruction
of a dynamic indoor scene using Pan-Tilt-Zoom cameras. The system
combines Pan-Tilt-Zoom cameras with static wide field-of-view depth
cameras within a networked platform. Traditionally, Pan-Tilt-Zoom cam-
eras have been extensively used in surveillance applications, since their
ability to pan, tilt and zoom in on an object allows them to cover a large
area with a reduced number of cameras. However, most of the existing
work with PTZ cameras deals with scanning or tracking objects in large
outdoor environments, where objects are typically large distances away
from the cameras. We use PTZ cameras in an indoor setting to zoom
in on relevant and interesting objects to get fine visual details. The fine
details and high resolution imagery enables us to augment and refine
the room’s 3D surface as constructed from off-the-shelf depth cameras
statically mounted around the room. We show significant improvements
in both texture quality and geometry when high-resolution imagery from
multiple PTZ cameras is used to supplement the 3D model built from
fixed commodity depth cameras.

1 Introduction

Obtaining 3D reconstruction of a dynamic room-sized indoor scene is of great
use in many applications. A few examples of such applications are 3D telepres-
ence, virtual and augmented reality systems, 3D animation and motion capture
systems. A dynamic environment poses significant challenges: not only are we
concerned with the motion of rigid objects, such as furniture and other props,
but we also have to account for objects that move in a non-rigid fashion and also
deform, e.g. human beings. In recent years, the proliferation of commodity depth
cameras, such as the Microsoft Kinect, has opened up new avenues for develop-
ment of a suitable 3D scanning system for an indoor room-sized environment.
These cameras are favored due to their low cost and reasonable degree of accu-
racy. However, the current state-of-the-art reconstruction using just these depth
cameras is still a long way from achieving the level of detail that is required in
certain domains, most notably 3D telepresence.

In this paper, we present a method to refine and improve such a dynamic 3D
reconstruction of a room-sized indoor environment by using narrow field-of-view
Pan-Tilt-Zoom cameras. The coarse 3D reconstruction is obtained by means of
multiple static wide field-of-view Kinect cameras, and the refinement is brought
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about by incorporating high resolution imagery acquired from multiple PTZ
cameras in various stages.

Objects in the environment can be broadly classified into one of the following
three categories, as stated by Dou and Fuchs in [1]:

1. Static Background

2. Rigid Semi-static object

3. Dynamic non-rigid objects

The walls, ceiling and any large and heavy items can be assumed to belong to
the first category, since they will not move, deform or change their appearance for
the duration of the capture. Objects such as chairs and small props belong to the
second category, since they can be moved, but will only deform rigidly. Human
actors in the scene belong to the third category, since not only do they move,
but also deform non-rigidly from one time instant to another. In our system,
each of these categories is treated differently in order to obtain the maximum
amount of information required to reconstruct a scene with a large amount of
detail. We will explore how the high-resolution imagery from variable field-of-
view cameras is used to enhance the 3D reconstruction of static, semi-static and
dynamic objects.

This endeavour presents several technical challenges. First, the problem of
segmenting out semi-static object from completely static objects in a fully auto-
mated way is a hard problem, and making this decision efficiently would greatly
help in deciding how to treat different objects and areas in the scene and assign
PTZ cameras to dynamic regions rather than static ones. 2D-3D registration is
also a significant problem, since 2D features cannot be trivially matched against
3D features. This has a direct bearing on camera pose estimation, which is a
major component of our algorithm. Inter-sensor calibration between cameras
with different focal lengths is non-trivial. Finally, there is the problem of the en-
tire process being too computationally expensive to be performed in real-time,
though there have been some attempts to perform such tasks on distributed
clusters and GPUs.

The remainder of this paper is structured as follows. Section 2 provides an
overview of current and relevant literature in the field. Section 3 gives an overview
of our system and pipeline developed to run the algorithms defined in subsequent
sections. The core contributions of this work are twofold, and described in Sec-
tions 4 and 5 respectively. The first contribution is registration of high-resolution
images onto a 3D mesh model with per-vertex color values, and then synthesis of
textures to improve visual quality of the reconstruction. The main algorithm and
results for this part are outlined in Section 4. The second contribution is stereo
reconstruction of dynamic objects using only high resolution imagery from the
PTZ cameras [2], and then fusing this high quality reconstruction into the coarse
model reconstructed using only commodity depth cameras. The algorithm and
results for this part are outlined in Section 5. Finally, Section 6 concludes the
paper, explains limitations and highlights possible avenues for future work.
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2 Related Work

2.1 3D Geometry Reconstruction

Dou and Fuchs [1] have developed a surface tracking algorithm that refines the
surfaces of dynamic objects over time using data acquired from multiple static
Kinect cameras. Their work also handles inter-surface penetrations appropriately
and fills in holes in the surfaces by accumulating temporal information from the
movement of the dynamic object. However, fixed cameras are not suitable for
capturing fine geometric features in dynamicly deforming and moving regions,
such as those commonly found on human faces. Therefore, their system does not
do a well enough job of reconstructing high reslution geometry, which is a signif-
icant limitation. These details are very valuable in 3D telepresence applications,
since human faces are areas of great interest in such scenarios, and will get a lot
of attention. The system also behaves erratically when dynamic objects do not
move around much, since the hole-filling algorithm greatly depends on obtaining
multiple projective views of the deforming object over time. Davis [3] presents a
scheme for multi-scale motion recovery by means of multiple cameras and careful
camera assignment to visual targets. However, this scheme utilizes LED markers
bound to objects of interest, and so is not suitable for our applications. Beck
et al [4] showcase a 3D immersive telepresence system, but their technique does
not use temporal coherence between consecutive frames to improve the quality
of the reconstruction. Matsuyama et al [5] present a real-time method for 3D
shape reconstruction and mesh deformation on a cluster of PCs for the purposes
of recording high-fidelity 3D video. Yous et al [2] present a resource assign-
ment scheme to control multiple Pan-Tilt cameras for the purpose of obtaining
a 3D video of a moving object. However, they only present a camera assignment
scheme, and do not present an algorithm to compute detailed meshes of the
observed object. They propose photometric consistency based space-carving [6]
and deformable mesh models [5] as appropriate algorithms for generating the 3D
structure of the object.

2.2 Pan-Tilt-Zoom Cameras

Ilie and Welch [7] propose a PTZ camera assignment scheme to track subjects
undergoing physical training. However, their approach is suitable for large out-
door environments, and does not deal with obtaining fine details about objects
in indoor environments. Wan and Zhou [8] present a technique for stereo vision
from a PTZ camera-pair which uses a form of spherical rectification and epipo-
lar geometry to cater for the varying zoom scale of the two cameras. Sinha and
Pollefeys [9] survey techniques for calibration of a network of PTZ cameras, and
also provide a novel technique based on feature-based alignment and bundle ad-
justment of images acquired by a rotating PTZ camera. This technique was then
applied to generating multi-resolution giga-pixel panoramas from PTZ cameras
[10]. There are also a number of other systems which utilizes the motion of PTZ
cameras, such as [3] and [11].
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3 System Overview

The camera network consists of 10 static Microsoft Kinect sensors mounted
at various points in the room, and three Axis 233D Pan-Tilt-Zoom cameras
mounted in a horizontal row at the front of the room. The Kinect cameras are
connected to a PC via dedicated USB ports, and the PTZ cameras are IP cameras
that are connected to the PC by a dedicated ethernet hub. The IP cameras can
be manipulated and queried for images, pan-tilt angles and zoom scales via
HTTP requests. The image acquisition system employed a self-clocking barrier
synchronization scheme to make sure that the frames acquired from PTZ cameras
and the Kinect cameras were closely synchronized. The main improvements in
the reconstruction are brought about by a two-phase process, as described below.

The first phase is designed to acquire as much information about the static
background as possible in order to achieve the best possible reconstruction qual-
ity for those objects. The data acquisition for this step is accomplished by moving
a single Kinect in an otherwise static room and a PTZ camera set at a static
high zoom scale and varying pan-tilt angles. The Kinect provides a sequence of
RGB-D frames, and the PTZ camera provides a RGB image for every pan-tilt
angle pair. A post-processing step corrects the Kinect images for depth bias [1].
The data collected in this phase is called the “pre-scan” data. Further details
are given in Section 4.

The goal of the second phase is to collect information about dynamic objects
in the scene. Data acquisition for this phase is done by means of multiple Kinects
mounted on the walls of the room, and multiple PTZ cameras focused on one
or more areas of interest. These areas are regions which humans are naturally
sensitive to in telepresence scenarios, e.g. human faces and readable text. This
second phase is called the “live session”. More details on this are present in
Section 5.

4 Augmenting Static Object Reconstruction with High
Quality Textures

High-quality textures are synthesized for parts of the model which form the static
background. Since these objects do not move or change their appearance for the
duration of the capture, we can perform a pre-scan of the entire room prior to
the actual capture session. All the RGB-D frames from the single moving Kinect
are aligned using a technique similar to that used in [12], which is based on
bundle adjustment and feature-based alignment. Once the images are aligned,
a volumetric depth map fusion yields a consolidated point cloud, which is then
triangulated using a marching cube technique [13]. The surface resulting from
this step is shown in Figure 1. We let this surface be called SKinect.

The model generated from this step yields only a single color per vertex, and
at most 1 vertex per centimeter cube, so visual quality is poor, especially in re-
gions with fine or detailed texture, human-readable text and other areas humans
are naturally sensitive to. To improve the visual quality of the reconstruction,



Enhancement of 3D Capture of Room-Sized Dynamic Scenes 383

Fig. 1. The 3D surface of the static background using only RGB-D frames from a single
moving Kinect. The surface is a color-by-vertex model and lacks detail.

we use the images acquired from the PTZ cameras during the pre-scan to gen-
erate high-resolution textures for the reconstructed model. The exact procedure
is detailed below.

First, for each image acquired from the moving Kinect during the pre-scan,
we compute a set of visual SIFT features [14]. Let IKinect the set of RGB-D
frames acquired from the Kinect during the pre-scan. Then, for each i ∈ IKinect,
we compute a set of visual SIFT features. We let this set be Fi. Each f ∈ Fi

has, by the nature of its computation, a keypoint location (a 2-element vector)
and a feature descriptor (a 128-element vector) associated with it. Let these be
called xf and Df respectively.

Then, for each such f , we compute and store the following:

– The 3D point on the reconstructed surface corresponding to the 2D location
of the feature in the image it was found in. This is a straightforward compu-
tation, since we already computed the alignment parameters for each image
during the surface construction. We call this point Xf .

– An image patch as an additional descriptor. This patch is simply a small
block of the image centered at the feature’s keypoint location. Let this patch
by Pf .

– A 3x3 homography matrix which maps Pf onto the image plane of the canon-
ical camera positioned at the origin and looking down the negative z-axis.
Let this homography be Hf .

– The surface normal at Xf . We let the normal vector in this direction be n̂f
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Fig. 2. The final output of texture transfer from PTZ images. We show regions of
high-resolution texture against the low-resolution surface generated from images from
a single moving Kinect. We report an approximately 6x improvement in texture quality,
measured as color sample per unit area, in areas where the texture was transferred as
compared to where it was not.
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Hence, for every feature f , we store the tuple 〈xf , Df ,Xf , Pf , Hf , n̂f 〉. We
compute such a tuple for every feature in every image in the set IKinect. We let
the set of all such tuples be T , and also refer to it as the set of “oriented texture
patches”, since each tuple contains a complete descriptor of a small texture
patch, its location and orientation in the 3D surface, and a SIFT descriptor for
feature matching.

Once the set of oriented texture patches has been computed, we then process
the images from the PTZ cameras. From the metadata acquired with the RGB
images, we have the pan angle, tilt angle and camera intrinsic matrix available
for each image j from the PTZ camera. We let these values be θj , φj and Kj

respectively. Therefore, for each image acquired by a PTZ camera, we have
a tuple 〈j, θj , φj ,Kj〉. Let the set of all such tuples be IPTZ . For each i ∈
IPTZ , we attempt to synthesize a high-resolution texture from it. For any given
image, we first attempt to compute an initial camera pose based on SIFT feature
correspondences between the PTZ image and SKinect. If a strong correspondence
cannot be found, the initial camera pose is estimated by using the camera pose
from a previous image, and then adjusting it based on the angle difference in
the respective orientations of the camera for those two images. The camera pose
is then iteratively refined by projecting the oriented texture patches onto the
camera plane, and then correcting the camera pose to align the pathces with
features found on the PTZ image. In all cases where the algorithm found a
strong estimate of the camera pose, the number of iterations needed was always
less than 5.

The two main steps in the algorithm are Camera Pose Estimation and Sur-
face Generation. Both steps were independently evaluated, and resulted in an
improvement in the visual quality of the surface. In our experiments, we ac-
quired a total of 1980 high-resolution images from the PTZ cameras and then
attempted to estimate camera pose for each image. We define a reliable match
to be one where the NCC measure between the corresponding normalized SIFT
descriptor vectors is at least 0.8, and at least 0.3 (roughly 25%) more than the
second best match. We were able to find a reliable set of matches and a camera
pose in roughly 64% of the images. Of the matched images, we observer the
pixel re-projection error mean and standard deviation to be 1.25 and 0.232 pix-
els respectively. Results for the Surface Generation and the subsequent fusion
with the base surface are shown in Figure 2. We observed an approximately 6x
improvement in texture quality, measured as color sample per unit area, in areas
where the texture was transferred as compared to where it was not. Given the
dimensions of our room, the average distance between color samples in the PTZ-
textured regions was 1.63 mm, whereas the average distance between samples in
the Kinect-sampled surface was 1 cm.

5 Augmenting the Reconstruction of Dynamic Objects

We improved the geometry by multi-view stereo reconstruction using images
from the PTZ cameras. To get a base surface, we utilized an approach similar to
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Fig. 3. The 3D point clouds obtained using only images from the PTZ cameras. These
point clouds represent the union of three distinct point clouds, and then fused using
known camera parameters of the PTZ cameras.

Fig. 4. The base surface from the RGB-D frames from multiple static Kinect cameras
(left), the stereo reconstruction from the high resolution PTZ cameras (center) and the
final fused surface (right)

the one descibed in [1]. RGB-D frames from multiple static Kinect cameras were
used to build a coarse surface of the moving object, and the surface was refined
over time as more and more frames were used to smooth out the surface and
fill any holes. However, excessive smoothing of the surface resulted in losses in
surface detail. Additionally, the system failed when the object was not moving,
since the algorithm relies on spatial and temporal cohesion between frames, and
varying views of the object over a period of time. Consequently, the results are
far from satisfactory. This problem is an important one to tackle, since humans



Enhancement of 3D Capture of Room-Sized Dynamic Scenes 387

are very perceptive of errors in reconstructing other human faces, and we expect
that such a large loss of detail would result in a poor user experience.

In our method, we used the PTZ cameras to focus on a human face to obtain
stereo-pair images for the dynamic face. We then generated a detailed surface for
the face using stereo matching. The algorithm used was a Semi-Global Blocking
Matching Algorithm [15] on stereo-rectified image pairs to compute a disparity
map in the central PTZ cameras frame of reference. The disparity map and the
camera matrices of the PTZ cameras were then used to obtain a 3D point cloud.
Since we worked with 3 PTZ cameras, we had three distinct pairs of cameras,
and therefore three distinct point clouds for each set of frames at a given time
instance. The final point cloud was obtained as a union of the three point clouds
in the same frame of reference. These point clouds contained a large amount of
noise. For noise removal, we employed a Laplacian smoothing transform, similar
to that utilized in [16] followed by a Poisson Reconstruction algorithm [17] for
surface generation. We evaluated our method by making the subject perform
a variety of facial expressions and movements. The final surfaces obtained are
shown in Figure 3. We see that the high quality of the images results in a very
detailed surface, and most of the facial geometry can be recovered for a variety
of facial expressions and movements.

This final result was then fused with the base surface obtained from static
Kinect cameras. The fusion was done by means of the camera pose estimation
algorithm employed in Section 4. Background features in the PTZ images were
matched against the precomputed features on the static model, thereby getting
an accurate estimate of camera pose. This was then used to project the recon-
structed surface back onto the base surface from the Kinect cameras. Further
refinement of the surface alignment was done by means of the Iterative Closest
Point algorithm [18] with automated feature detection and alignment. This re-
sults in a marked improvement in both texture and geometry of the dynamic
human face. Figure 4 shows the state of the surface before and after fusion with
the geometry obtained from the PTZ cameras.

6 Limitations and Future Work

The algorithm described in this paper is an improvement to the system described
in [1], but there is still a lot of room for improvement. While the texture transfer
technique described in Section 4 is a robust technique for the images that were
matched, we still observe roughly a third of the total amount of images unable
to be mapped onto the surface due to unreliable feature matching and camera
pose estimation for those images. It is possible that a new kind of visual feature
and keypoint descriptor would increase the robustness of the method and im-
prove the accuracy of the estimated camera pose even further. The stereo vision
and geometry transfer techniques described in Section 5 also leave room for fu-
ture work, especially in the area of real-time tracking of faces instead of manual
input for that purpose. Incorporating improved object-aware stereo reconstruc-
tion methods could yield a denser point cloud. Alternatively, we also intend to
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explore the possibility of incorporating cameras with a higher resolution that
our PTZ cameras. This would provide us more pixels of our object of interest,
and therefore, a denser point cloud for geomtry reconstruction. Furthermore,
the technique to re-project the dense surface back onto the base surface is also
imperfect. We observe offsets at the edges of the dense surface where it does
not blend well with the base surface. An example of this artefact can be seen in
Figure 4. We aim to develop a smoothing technique which causes the edges of
the dense surface to be continuous with the low resolution base surface.

Our system is also limited by the computing speed of the current hardware.Due
to the computationally expensive nature of the 3D reconstruction being done, the
computation is performed completely offline using pre-recorded datasets. We can
expect that a future implementation of the same scheme on the GPU or a PC-
cluster will drastically reduce the computation time per frame. An example of a
real-time systemwhich runs on a PC-cluster is explained in [5]. We used only three
PTZ cameras for pair-wise stereo reconstruction of a deforming object. A possible
extension of this system would include using more PTZ cameras in conjunction
with an online assignment scheme such as those described in [2] and [7] to perform
online assignment of PTZ cameras to obtain fine geometric features of interesting
objects while they moved around in the room.
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