Towards Image Realism with Interactive Update Rates
in Complex Virtual Building Environments!

John M. Airey, John H. Rohlf?, and Frederick P. Brooks, Jr.

Department of Computer Science, Sitterson Hall
University of North Carolina
Chapel Hill, NC 27599-3175

Tsilicon Graphics Computer Systems
Mountain View, CA 94039-7311

Abstract

Two strategies, pre-computation before display and
adaptive refinement during display, are used to combine
interactivity with high image quality in a virtual building
simulation, Pre-computation is used in two ways, The
hidden-surface problem is partially solved by automatically
pre-computing potentially visible sets of the model for sets
of related viewpoints, Rendering only the potentially visible
subset associated with the current viewpoint, rather than the
entire model, produces significant speedups on real building
models. Solations for the radiosity lighting model are pre-
computed for up to twenty different sets of lights, Linear
combinations of these solutions can be manipulated in real
time, We use adaptive refinement to trade image realism for
interactivity as the situation requires. When the user is
stationary we replace a coarse model using few polygons
with a more detailed model, Image-level linear interpolation
smooths the transition between differing levels of image
realism.

CR Categories and Subject Descriptors: 1.3.3
[Computer Graphics]: Picture/Image Generation - display
algorithms, viewing algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - color,shading
and shadowing.

Additional Key Words and Phrases: model-space
subdivision, potentially visible, radiosity, adaptive
refinement,

1This work was supported by NSF Grant#CCR-8609588
and ONR Grant#N00014-86-K-0680

1, Introduction

Our basic goal is a virtual building environment, a
system which simulates human experience with a building,
without physically constructing the building. Many
components of a building simnlator, corresponding to many
human senses, are important. We concentrate on techniques
to enhance visual simulation.

We find natural motion to be a very important
component of visual simulation. We observe user behavior
to be qualitatively different at six updates per second as
compared to behavior at one update per second.

» At 1 frame per second, the system is painful to use. It is
necessary to use a two-dimensional floorplan display, or
map view, to navigate.

» As the frame rate increases to around 20 frames per second
interactivity appears to increase rapidly befare leveling off.
At around 6 frames per second the virtual building illusion
begins to work. It is possible to navigate with only the
three-dimensional display, or scene view.

However, realistic images are also important. We use a
lighting model that realistically simulates the complicated
diffuse, interreflections within a building interior.
Furthermore, studying real buildings demands large, detailed
models.

Each of these simulation enhancements greatly increases
the number of primitives the display subsystem must
process and has an adverse effect on interactivity. To help
our display subsystem cope with this increased load and
remain interactive, we use two stategies. We pre-compute as
much work as possible and use adaptive refinement
techniques during display [Bergman86]. The resulting
combination is a system that attempts to keep the update
rate above about six frames per second while providing as
realistic an image as possible.

user, e.8., & client, may desire a restrictive but more natural
interface, (a treadmill with a head-mounted display or big
screen display). We expect to report on the research results
of the interface subsystem in another publication.

2.4 Display Compiler

The display compilation task must translate the
geometric and surface attribute information from the model
into a form suitable for rapid display and interaction with the
interface devices. Figure 2 depicts the process of converting
an AutoCAD dataset into a form suitable for a virtual world
system. The rectangles represent programs. The ovals
represent data files. The type of the data file is depicted by
the Unix convention of filename extensions,

AutoCAD ({(_dxf)

Jtemplates

model subdivision,
potentially visible
set computation

radiosity

1

Copaen) Georea)
((tpawch) [(Cpartiion)

t v ¥ v

compile display file

Planes 4

Figure 2. Display File Compilation in
UNC Walkthrough System.

The AutoCAD external files (.dxf extension) are parsed
and converted to a simple format which consists entirely of
polygons (.poly extension). Separate files are generated
which contain surface attribute information (.sc extension),
and the sets of lights for which we want to compute
independent radiosity solutions (.circuit extension). Another
file (.template extension) allows Phigs+ -like structures to

be incorporated into the final display file. The display
compilation forks into the radiosity process and the model
subdivision process.

The radiosity system is described in Section 4. It
processes .poly files by antomatically dicing the polygons
into derived patches and computing color values for each
patch for each independent light circuit. The original
polygons are given color values by averaging the values of
their derived patches. The patches retain indices to parent
polygons, The shaded polygons are written to a file with a
J.patch extension and the derived patches are written to a
file with a .1.patch extension. This information is used by
the next program to construct hierarchical polygons. A
hierarchical polygon is a polygon that has an associated list
of polygons that may be used to replace the polygon. We
have experimented only with one level of refinement and
with refining all polygons to the same level simultaneously,
but our data structures and display code allow arbitrary
subdivision for each polygon independently.

The model subdivigion process is described in Section 3.
It generates a recursive subdivision of the model space. The
result of this subdivision process is a tree of splitting planes
(-partition extension). The .partition file defines
subvolumes, or cells,of the model (.cell extension). Each of
these cells is processed to determine the polygons that are
potentially visible to an observer ranging freely inside the
cell. These polygons are then associated with the cell.
During display, the cell containing the current viewpoint is
found, and only its associated polygons are rendered.

3. Display Acceleration by Model-Space
Subdivision and Volume-to-Polygon Visibility
Testing

Architectural databases possess special characteristics.
We list some of these properties here and then describe how
we exploit them.

1. The model is changed much less often than the
viewpoint, which makes pre-processing desirable.

2. Many buildings have high average depth complexity. Any
image computed from an interior viewpoint will have many
surfaces covering every pixel. A related observation is that
most of the model does not contribute at all to any given
image. Furthermore, the depth complexity of a building is
basically independent of tesselation due to shading and
independent of the amount of detail modelled.

3. Most polygons are axial, that is parallel to two of the
coordinate axes. Additionally many polygons are rectangles.

4. The set of polygons that appears in each view changes
slowly as the viewpoint moves, except when crossing
certain thresholds, e.g., doors, which we call portals.

The metrics we use quantify these criteria between 0 and
1, A linear combination of these values, with the occlusion
factor weighted most heavily, has proven to be successful:

partition priority = .5*occlusion + .3*balance + 2*gplit.

To satisfy Objective 2, the process terminates when no
partitioning plane has a partition priority exceeding a user-
defined threshold or when other Limits, such as tree-depth,
are exceeded. The process generates a tree with interior nodes
representing binary separating planes and leaf nodes
representing cell volumes,

If we ran this function on the "planes” in our simple
example floor plan, the wall that separates room 2 and room
3 from room 1, the plane y=1, would have a higher partition
prioritythanthewallthatsepmtesroomZﬁ'omroom3.
the plane x=1, based on its higher occlusion factor, This
yields two cells, room 1 and the combination of room 2 and
room 3. Recursively evaluating our heuristic function on
these two cells suggests that room 2 and room 3 can be
further split into two cells along the plane x=1 (figure 4 and

(22)

rooml

y=1

0.0) x=1

Figure 4. The Subivided Floor Plan.

y=1

e i

/ \ rooml

room2 room3

Figure 5. The Corresponding Tree Data
Structure for Figure 4. Interior Nodes
Represent Splitting Planes and Leaf
Nodes Represent Cell Volumes.

3.2 Volume-to-Polygon Visibility Testing

After model-space subdivision, the subset of the model
potentially visible to an observer inside each cell is
computed and stored with the cell. If the cell is completely
sealed,thatis,imboundaryiscomposedofopaquesmfaces,
then this is easy to do. The potentially visible set for the
cell is simply the set of polygons that intersect the cell.
However, if the cell has holes in its boundary, called
portals, then the problem is more difficult. In our simple
example, the only portals are actual doors. In real-life
datasets, hallways, stairwells, windows, and oddly shaped
rooms give rise to other portals, Algorithms that compare
co-planar sets of polygons can compute the actual polygonal
definitions of the portals [Ottman85],[Weiler81).

We call the question of what external polygons we
should add to the potentially visible set for a cell the
volume-to-polygon visibility problem. This can be reduced
to another problem. We really only have to worry about
what can be seen from the portals, which can be represented
with polygons, Taking the union of what is visible from all
the portals of a cell solves the volume-to-polygon visibility
problem for the cell.

Unfortunately, this is also a difficult problem. We need
to know what is visible from an area, an infinite albeit
bounded number of viewpoints, We call this problem the
viewarea problem.

This is fundamentally equivalent to computing the
polygons that receive direct illumination from an area light
source [Nishita85). Other researchers have examined a related
problem in two dimensions which deals with visibility from
an edge [Avis86], [ORourke87].

Since algorithms to compute the exact solution for the
viewarea problem are complex and inefficient, we have
developed two complementary classes of algorithms to
compute approximations to the exact solution. These are
detailed in [Airey90].

One class uses point sampling and may underestimate
the set of polygons to add to the cell's potentially visible
set. This is analogous to the use of point sampling in
radiosity solutions. In fact, it is implemented with the same
ray-polygon intersection library used by our radiosity
implementation, Section 4.

Another class establishes occlusion relationships among
polygons. This is based on the computation of shadow

.volumes [Crow77]. Since exhaustive computation of

shadow volumes is expensive, we compute a partial
solution. This may overestimate the set of polygons to add
to the cell's potentially visible set. Since the exact solution
is bracketed by these two algorithms, we hope they can be
combined into a more accurate algorithm in the future.

practical [Cohen88]. The algorithm runs in linear space, and
usually only linear time is required to converge to an
acceptable solution. It is no longer a research curiosity but a
tool for virtual environments.

4.1 A Ray-Casting Approach

We use a modified shooting approach to compute the
radiosity solution. The sampling process uses ray-casting
based on a jittered hemispherical distribution, rather than a
Z-buffer based hemi-cube [Airey89],

At each iteration step, we adapt the resolution of the
hemispherical sampling distribution as a function of unshot
radiosity to keep the radiosity per ray constant, Airey and
Ouh-young observed, empirically, that the unshot radiosity
at each step decreases as a negative exponential. Thus, the
number of rays fired at each step also decreases as a negative
exponential,

A new ray-polygon intersection algorithm tuned to
architectural databases accelerates the ray casting, It takes
advantage of characteristics such as the large proportion of
axial rectangles. The basic idea can be easily described in
two dimensions, Consider the problem of computing the
closest intersection of the ray and line segments depicted in

figure 6.

y=d
y=¢c
N
y=b .
= \
x=a] x=b x=c| x=d

Figure 6. Ray-Line Segment Intersection.

The ray intersects the lines containing segments parallel
to the x-axis, in order, from bottom to top. Similarly, the
ray intersects the lines containing segments parallel to the
y-axis, in order, from right to left.

This suggests a data structure which groups line
segments lying in the same line together. Each set of
parallel lines is sorted along the normal direction. This data

Structure can be pre-computed.

To compute the intersections in order, we check the
intersection parameter for the closest line in each of the two
sorted lists. In our example, the line y=a is closer than the
line x=d. When we check the segments lying in the line
y=a, we halt and report the intersection.

If we had not found an intersection, we would have
computed the intersection parameter for the next line in the
x-parallel list, y=b, and compared it with the intersection
parameter for the line x=d. We continue to effectively merge
the two lists until we find an intersection.

The process works in three dimensions similarly, The
small percentage of non-axial polygons are put into a
standard BSP tree, After an intersection is found for the axial
polygons, the BSP tree is searched from front to back until
we find an intersection or exceed the intersection parameter
found for the axial polygons.

The primary advantage of ray-casting sampling
algorithms is flexibility. We have been able to experiment
with light-emitter distributions other than true diffuse
emission, such as spotlight-like distributions, with only
small changes in our software. Wallace, et al., use ray-
casting to sample the light source from the model vertices to
decrease solution errors due to limited sampling distributions
[Wallace89]. They also note other advantages, such as the
ability to use exact parametric descriptions of objects.

4,2 Interactive Light Manipulation

We have extended our radiosity program to compute the
contributions of several different light circuits. For each
patch we simultaneously compute a vector of radiosities,
one entry for each light circuit. Since a value for the red,
green and blue channels must be stored for every patch for
every independent set of lights, the storage requirement is
large. On workstations used to compute the radiosity
solution, large physical memories and virtual memory ease
this problem. However, we did not have enough display
memory for some of our models. We devised an
approximation to save space. An average color is computed
from the colors due to each light circuit, and an 8 bit
intensity value is computed for each light circuit.

The radiosity process computes an array of color values
for each vertex,

<r,g,b>y, with 0 <=r,g,b < 256,

one for each of the k light circuits. We compute an average
color,

<R,G,B> = z (qvg’b>k);
max = MAX(MAX(R,G),B);

The resolution level of the hierarchical polygons displayed is
increased; we display the patches.

We smooth the transition from one quality level to the
next with pixel-level blending to minimize user distraction.
The blending takes advantage of the huge aggregate SIMD
computing power of the Pixel-Planes 4 machine by
computing the blending function at every pixel
simultaneously. The blending implementation uses fifty
interpolation steps and occurs in a fraction of a second.

The level of resolution refinement is fixed by the choice
of patch size made during the radiosity pre-computation. We
have developed secondary levels of refinement that are
dependent upon the current view and light circuit settings.
The secondary levels of improvement are slower since they
involve computation during display, but they can markedly
improve an image that snffers from coarse patch sampling.

uniform choice choosing the diagonal
of quadrilateral to run along contour
diagonal lines

Choice of
Difference

Uniform

Figure 8.
Quadrilateral Diagonal vs.
Directed Choice. In the Actual Image, the
Colors are Transfered to Patch Vertices
and Linear Interpolation Provides Smooth
Shading.

We approximate bilinear interpolation across a

quadrilateral patch with two triangles so the shading can be
expressed as a Pixel-Planes 4 linear expression [Fuchs85].
This can cause problems. Note that if the color values at the
four corners of the quadrilateral are a, b, c, d, then the
bilinearly-interpolated color at the center of the patch is
(a+b+c+d) /4. Since a quadrilateral can be triangulated in
two ways, the value at the center is either (a+c) /2 or
(b+d) /2, depending upon which diagonal is chosen.

During the first adaptive refinement step, we choose the
diagonal uniformly, As a secondary adaptive refinement step,
we choose the diagonal that connects the two vertices that
are more closely matched in color. This tends to make the
diagonals run perpendicular to the shading gradient (Figure
8).

Even after choosing the best diagonal, the approximation
may be inaccurate, A patch can be subdivided into four
patches. The color value at the new center vertex is
computed with bilinear interpolation. The process is applied
to each subpatch recursively.

Following adaptive refinement of shading, the image is
anti-aliased. We use an algorithm developed by Fuchs et al.
that builds the anti-aliased image using supersampling
[Fuchs85]. A new image is computed for each supersample
and blended smoothly into an accumulated image using the

supersample filter weights.
6. Color Plates

The church2 model of Orange United Methodist Church
Fellowship Hall has served as one of our primary system
evaluation databases. It has 6037 polygons drawn from a
larger 12,000+ polygon model. The model subdivision
process partitioned it into 16 cells. As a result, the display
subsystem needs to process 1887 polygons on average and
3477 in the worst case, Pixel-Planes 4 can display the basic
maodel at more than 8 frames per second.

All five color plates show the image that is produced
when the viewer is stationary and adaptive refinement has
replaced the coarse model with the radiosity-shaded model
and anti-aliasing has smoothed the jaggies. The radiosity
process produced 26,794 patches with 65,627 vertices from
the original 6037 polygons by dicing at a resolution of 21
square inches. A radiosity solution was computed for 13
different lighting circuits. These may be manipulated
interactively. The radiosity solution was computed overnight
on a DECstation 3100.

The building was designed by Wesley McClure and Craig
Leonard of McClure NBBJ. The modelling was done by
Penny Rheingans and John Alspaugh with AutoCAD.

Plate 3, is a perspective plan view. We allow the user to
choose whether or not back-facing polygons are rendered. In

